skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wainscoat, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We conduct an analysis of over 60,000 dwarf galaxies ( 7 log M * / M 10 ) in search of photometric variability indicative of active galactic nuclei (AGNs). Using data from the Young Supernova Experiment, a time domain survey on the Pan-STARRS telescopes, we construct light curves for each galaxy in up to four bands (griz) where available. We select objects with AGN-like variability by fitting each light curve with a damped random walk (DRW) model. After quality cuts and removing transient contaminants, we identify 1100 variability-selected AGN candidates (representing 2.4% of the available sample). We analyze their spectra to measure various emission lines and calculate black hole (BH) masses, finding general agreement with previously found mass scaling relations and nine potential intermediate-mass BH candidates. Furthermore, we reanalyze the light curves of our candidates to calculate the dampening timescaleτDRWassociated with the DRW and see a similar correlation between this value and the BH mass. Finally, we estimate the active fraction as a function of stellar mass and see evidence that the active fraction increases with host mass. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026
  2. Abstract We report initial observations aimed at the characterization of a third interstellar object. This object, 3I/ATLAS or C/2025 N1 (ATLAS), was discovered on 2025 July 1 UT and has an orbital eccentricity ofe ∼ 6.1, perihelion ofq ∼ 1.36 au, inclination of ∼175°, and hyperbolic velocity ofV ∼ 58 km s−1. We report deep stacked images obtained using the Canada–France–Hawaii Telescope and the Very Large Telescope that resolve a compact coma. Using images obtained from several smaller ground-based telescopes, we find minimal light-curve variation for the object over a ∼4 day time span. The visible/near-infrared spectral slope of the object is 17.1% ± 0.2%/100 nm, comparable to other interstellar objects and primitive solar system small bodies (comets and D-type asteroids). Moreover, 3I/ATLAS will be observable through early 2025 September, then unobservable by Earth-based observatories near perihelion due to low solar elongation. It will be observable again from the ground in late 2025 November. Although this limitation unfortunately prohibits detailed Earth-based observations at perihelion when the activity of 3I/ATLAS is likely to peak, spacecraft at Mars could be used to make valuable observations at this time. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026
  3. Abstract With a small sample of fast X-ray transients (FXTs) with multiwavelength counterparts discovered to date, their progenitors and connections toγ-ray bursts (GRBs) and supernovae (SNe) remain ambiguous. Here, we present photometric and spectroscopic observations of SN 2025kg, the SN counterpart to the FXT EP 250108a. Atz= 0.17641, this is the closest known SN discovered following an Einstein Probe (EP) FXT. We show that SN 2025kg’s optical spectra reveal the hallmark features of a broad-lined Type Ic SN. Its light-curve evolution and expansion velocities are comparable to those of GRB-SNe, including SN 1998bw, and two past FXT-SNe. We present JWST/NIRSpec spectroscopy taken around SN 2025kg’s maximum light, and find weak absorption due to HeI1.0830μm and 2.0581μm and a broad, unidentified emission feature at ∼4–4.5μm. Further, we observe broadened Hαin optical data at 42.5 days that is not detected at other epochs, indicating interaction with H-rich material. From its light curve, we derive a56Ni mass of 0.2–0.6M. Together with our companion Letter, our broadband data are consistent with a trapped or low-energy (≲1051erg) jet-driven explosion from a collapsar with a zero-age main-sequence mass of 15–30M. Finally, we show that the sample of EP FXT-SNe supports past estimates that low-luminosity jets seen through FXTs are more common than successful (GRB) jets, and that similar FXT-like signatures are likely present in at least a few percent of the brightest Type Ic-BL SNe. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  4. Abstract The nearby type II supernova, SN 2023ixf in M101 exhibits signatures of early time interaction with circumstellar material in the first week postexplosion. This material may be the consequence of prior mass loss suffered by the progenitor, which possibly manifested in the form of a detectable presupernova outburst. We present an analysis of long-baseline preexplosion photometric data in theg,w,r,i,z, andyfilters from Pan-STARRS as part of the Young Supernova Experiment, spanning ∼5000 days. We find no significant detections in the Pan-STARRS preexplosion light curves. We train a multilayer perceptron neural network to classify presupernova outbursts. We find no evidence of eruptive presupernova activity to a limiting absolute magnitude of −7 mag. The limiting magnitudes from the full set ofgwrizy(average absolute magnitude ≈ −8 mag) data are consistent with previous preexplosion studies. We use deep photometry from the literature to constrain the progenitor of SN 2023ixf, finding that these data are consistent with a dusty red supergiant progenitor with luminosity log L / L ≈ 5.12 and temperature ≈ 3950 K, corresponding to a mass of 14–20M
    more » « less
  5. Abstract Centaurs are small bodies orbiting in the giant planet region that were scattered inward from their source populations beyond Neptune. Some members of the population display comet-like activity during their transition through the solar system, the source of which is not well understood. The range of heliocentric distances where the active Centaurs have been observed and their median lifetime in the region suggest that this activity is driven neither by water-ice sublimation nor entirely by supervolatiles. Here we present an observational and thermodynamical study of 13 Centaurs discovered in the Pan-STARRS1 detection database aimed at identifying and characterizing active objects beyond the orbit of Jupiter. We find no evidence of activity associated with any of our targets at the time of their observations with the Gemini North telescope in 2017 and 2018, or in archival data from 2013 to 2019. Upper limits on the possible volatile and dust production rates from our targets are 1–2 orders of magnitude lower than production rates in some known comets and are in agreement with values measured for other inactive Centaurs. Our numerical integrations show that the orbits of six of our targets evolved interior to r ∼ 15 au over the past 100,000 yr, where several possible processes could trigger sublimation and outgassing, but their apparent inactivity indicates that either their dust production is below our detection limit or the objects are dormant. Only one Centaur in our sample—2014 PQ 70 —experienced a sudden decrease in semimajor axis and perihelion distance attributed to the onset of activity for some previously known inactive Centaurs, and therefore it is the most likely candidate for any future outburst. This object should be a target of high interest for any further observational monitoring. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)